7,966 research outputs found

    Enhanced transmission of slit arrays in an extremely thin metallic film

    Get PDF
    Horizontal resonances of slit arrays are studied. They can lead to an enhanced transmission that cannot be explained using the single-mode approximation. A new type of cavity resonance is found when the slits are narrow for a wavelength very close to the period. It can be excited for very low thicknesses. Optimization shows these structures could constitute interesting monochromatic filters

    Dynamic Provenance for SPARQL Update

    Get PDF
    While the Semantic Web currently can exhibit provenance information by using the W3C PROV standards, there is a "missing link" in connecting PROV to storing and querying for dynamic changes to RDF graphs using SPARQL. Solving this problem would be required for such clear use-cases as the creation of version control systems for RDF. While some provenance models and annotation techniques for storing and querying provenance data originally developed with databases or workflows in mind transfer readily to RDF and SPARQL, these techniques do not readily adapt to describing changes in dynamic RDF datasets over time. In this paper we explore how to adapt the dynamic copy-paste provenance model of Buneman et al. [2] to RDF datasets that change over time in response to SPARQL updates, how to represent the resulting provenance records themselves as RDF in a manner compatible with W3C PROV, and how the provenance information can be defined by reinterpreting SPARQL updates. The primary contribution of this paper is a semantic framework that enables the semantics of SPARQL Update to be used as the basis for a 'cut-and-paste' provenance model in a principled manner.Comment: Pre-publication version of ISWC 2014 pape

    Fish evacuate smoothly respecting a social bubble

    Full text link
    Crowd movements are observed among different species and on different scales, from insects to mammals, as well as in non-cognitive systems, such as motile cells. When forced to escape through a narrow opening, most terrestrial animals behave like granular materials and clogging events decrease the efficiency of the evacuation. Here, we explore the evacuation behavior of macroscopic, aquatic agents, neon fish, and challenge their gregarious behavior by forcing the school through a constricted passage. Using a statistical analysis method developed for granular matter and applied to crowd evacuation, our results clearly show that, unlike crowds of people or herds of sheep, no clogging occurs at the bottleneck. The fish do not collide and wait for a minimum waiting time between two successive exits, while respecting a social distance. When the constriction becomes similar to or smaller than their social distance, the individual domains defined by this cognitive distance are deformed and fish density increases. We show that the current of escaping fish behaves like a set of deformable 2D-bubbles, their 2D domain, passing through a constriction. Schools of fish show that, by respecting social rules, a crowd of individuals can evacuate without clogging, even in an emergency situation.Comment: 7 pages, 4 figure

    The Breakdown of Kinetic Theory in Granular Shear Flows

    Full text link
    We examine two basic assumptions of kinetic theory-- binary collisions and molecular chaos-- using numerical simulations of sheared granular materials. We investigate a wide range of densities and restitution coefficients and demonstrate that kinetic theory breaks down at large density and small restitution coefficients. In the regimes where kinetic theory fails, there is an associated emergence of clusters of spatially correlated grains

    Quasi-rigidity: some uniqueness issues

    Full text link
    Quasi-rigidity means that one builds a theory for assemblies of grains under a slowly changing external load by using the deformation of those grains as a small parameter. Is quasi-rigidity a complete theory for these granular assemblies? Does it provide unique predictions of the assembly's behavior, or must some other process be invoked to decide between several possibilities? We provide evidence that quasi-rigidity is a complete theory by showing that two possible sources of indeterminacy do not exist for the case of disk shaped grains. One possible source of indeterminacy arises from zero-frequency modes present in the packing. This problem can be solved by considering the conditions required to obtain force equilibrium. A second possible source of indeterminacy is the necessity to choose the status (sliding or non-sliding) at each contact. We show that only one choice is permitted, if contacts slide only when required by Coulomb friction.Comment: 14 pages, 3 figures, submitted to Phys Rev E (introduction and conclusion revised

    Optimal estimation for Large-Eddy Simulation of turbulence and application to the analysis of subgrid models

    Get PDF
    The tools of optimal estimation are applied to the study of subgrid models for Large-Eddy Simulation of turbulence. The concept of optimal estimator is introduced and its properties are analyzed in the context of applications to a priori tests of subgrid models. Attention is focused on the Cook and Riley model in the case of a scalar field in isotropic turbulence. Using DNS data, the relevance of the beta assumption is estimated by computing (i) generalized optimal estimators and (ii) the error brought by this assumption alone. Optimal estimators are computed for the subgrid variance using various sets of variables and various techniques (histograms and neural networks). It is shown that optimal estimators allow a thorough exploration of models. Neural networks are proved to be relevant and very efficient in this framework, and further usages are suggested

    Prospecting Period Measurements with LSST - Low Mass X-ray Binaries as a Test Case

    Full text link
    The Large Synoptic Survey Telescope (LSST) will provide for unbiased sampling of variability properties of objects with rr mag << 24. This should allow for those objects whose variations reveal their orbital periods (PorbP_{orb}), such as low mass X-ray binaries (LMXBs) and related objects, to be examined in much greater detail and with uniform systematic sampling. However, the baseline LSST observing strategy has temporal sampling that is not optimised for such work in the Galaxy. Here we assess four candidate observing strategies for measurement of PorbP_{orb} in the range 10 minutes to 50 days. We simulate multi-filter quiescent LMXB lightcurves including ellipsoidal modulation and stochastic flaring, and then sample these using LSST's operations simulator (OpSim) over the (mag, PorbP_{orb}) parameter space, and over five sightlines sampling a range of possible reddening values. The percentage of simulated parameter space with correctly returned periods ranges from \sim23 %, for the current baseline strategy, to \sim70 % for the two simulated specialist strategies. Convolving these results with a PorbP_{orb} distribution, a modelled Galactic spatial distribution and reddening maps, we conservatively estimate that the most recent version of the LSST baseline strategy will allow PorbP_{orb} determination for \sim18 % of the Milky Way's LMXB population, whereas strategies that do not reduce observations of the Galactic Plane can improve this dramatically to \sim32 %. This increase would allow characterisation of the full binary population by breaking degeneracies between suggested PorbP_{orb} distributions in the literature. Our results can be used in the ongoing assessment of the effectiveness of various potential cadencing strategies.Comment: Replacement after addressing minor corrections from the referee - mainly improvements in clarificatio

    Optical performance of the JWST MIRI flight model: characterization of the point spread function at high-resolution

    Get PDF
    The Mid Infra Red Instrument (MIRI) is one of the four instruments onboard the James Webb Space Telescope (JWST), providing imaging, coronagraphy and spectroscopy over the 5-28 microns band. To verify the optical performance of the instrument, extensive tests were performed at CEA on the flight model (FM) of the Mid-InfraRed IMager (MIRIM) at cryogenic temperatures and in the infrared. This paper reports on the point spread function (PSF) measurements at 5.6 microns, the shortest operating wavelength for imaging. At 5.6 microns the PSF is not Nyquist-sampled, so we use am original technique that combines a microscanning measurement strategy with a deconvolution algorithm to obtain an over-resolved MIRIM PSF. The microscanning consists in a sub-pixel scan of a point source on the focal plane. A data inversion method is used to reconstruct PSF images that are over-resolved by a factor of 7 compared to the native resolution of MIRI. We show that the FWHM of the high-resolution PSFs were 5-10% wider than that obtained with Zemax simulations. The main cause was identified as an out-of-specification tilt of the M4 mirror. After correction, two additional test campaigns were carried out, and we show that the shape of the PSF is conform to expectations. The FWHM of the PSFs are 0.18-0.20 arcsec, in agreement with simulations. 56.1-59.2% of the total encircled energy (normalized to a 5 arcsec radius) is contained within the first dark Airy ring, over the whole field of view. At longer wavelengths (7.7-25.5 microns), this percentage is 57-68%. MIRIM is thus compliant with the optical quality requirements. This characterization of the MIRIM PSF, as well as the deconvolution method presented here, are of particular importance, not only for the verification of the optical quality and the MIRI calibration, but also for scientific applications.Comment: 13 pages, submitted to SPIE Proceedings vol. 7731, Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wav

    Quark-lepton mass unification at TeV scales

    Full text link
    A scenario combining a model of early (TeV) unification of quarks and leptons with the physics of large extra dimensions provides a natural mechanism linking quark and lepton masses at TeV scale. This has been dubbed as early quark-lepton mass unification by one of us (PQH) in one of the two models of early quark-lepton unification, which are consistent with data, namely SU(4)_PS \otimes SU(2)_L \otimes SU(2)_R \otimes SU(2)_H. In particular, it focused on the issue of naturally light Dirac neutrino. The present paper will focus on similar issues in the other model, namely SU(4)_PS \otimes SU(3)_L \otimes SU(3)_H.Comment: Accepted for publication in PRD: The new version is in agreement with the accepted manuscrip
    corecore